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Overview/Executive Summary  

The use of supervised deep learning has revolutionized the field of computer vision (CV). Deep learning 
models have achieved near-human-level performance across a broad range of CV tasks, including object 
detection, classification, semantic segmentation, and image generation. These models use supervised 
learning to train large networks of parameters, such as those used in convolutional neural networks 
(CNNs), on datasets that demonstrate how a task should be performed. But supervised learning comes 
with a significant cost — a critical need for large amounts of labeled data to train these models. At 
present, state-of-the-art algorithms are not able to learn from unlabeled data; they require large amounts of 
painstakingly labeled data in order to perform well, creating a labeled data-dependency problem. In the 
best case, this problem can be solved by manually labeling data, although that is time-consuming, 
expensive, and error prone. In the worst case, which is the situation with uncommon objects, dataset 
curation is even more difficult, as there isn’t enough available data to label.  

On the other hand, advancements in computer graphics have made it possible to generate a virtually 
unlimited number of synthetic images of objects of interest that look nearly indistinguishable from real 
images. Given an example 3D model of an object and an understanding of the satellite sensor, it is 
possible to generate labeled synthetic datasets for training. However, to date, efforts to use synthetic 
images to train CNN models have had limited success. Neural networks are very efficient at ‘learning’ 
what is unique about the objects in the images. In this case, they quickly learn how the synthetic 
generation process produces the object instances. As a result, the model is unable to recognize the object 
in real images that lack the artifacts of the generation process. The model fails to generalize to the way 
that the object appears in real images.    

As part of a National Geospatial-Intelligence Agency (NGA) Small Business Innovation Research (SBIR) 
grant, Orbital Insight (OI) and its partner Rendered.ai made significant progress in solving two of the 
problems by using synthetic images to train CV models: how to modify synthetic images, so the trained 
model can generalize to real images; and how to use the combination of both a large set of synthetic 
images and a small set of real examples efficiently to jointly train a model. We demonstrated improved 
outcomes for object-detection performance through the use of synthetic data.    

OI and Rendered.ai identified several techniques that must be used together in order for synthetically 
generated images to be additive in training detection networks. Specifically, the experiment achieved the 
best results by combining a rich and robust set of 3D object models with both 2D and 3D simulated 
backgrounds; variable lighting and coloration; state-of-the-art ‘classical’ techniques for domain 
adaptation; and most critically, the use of CycleGAN models to adapt synthetic images to a target imagery 
domain. In this case, the target domain is the type of images produced by the optical platform used in the 
Xview1 dataset. Without this adaptation, the synthetic images were unable to outperform the real images 
when training the model to detect real-world instances of the objects of interest.   

Baseline Model and Dataset  
The experiment baseline definition detects a set of ‘novel’ object classes in a series of satellite images 
from a small set of labeled images. The experiment uses image data from the popular, public Xview 
dataset created by the Defense Innovation Unit Experimental and NGA. The experiment aims to detect 
novel objects in real-world images; specifically, three separate classes of cranes: “crane truck,” “mobile 
crane,” and “tower crane.” These objects have relatively few training examples in the dataset. In addition, 
mobile cranes and tower cranes do not look much like any of the basic object types (cars/trucks/planes/ 
ships) typically studied in synthetic images, so they are good proxies for the novel class problem — 
which is detecting an object that is not much like anything one has detected before. In contrast, the crane 

 
1 http://xviewdataset.org/ 
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truck class is a subclass of trucks that look a lot like other types of specialized trucks, such as concrete 
pump trucks, so utilizing the crane truck serves as a proxy for the novel-subclass problem.  

To emulate the problem of finding novel objects from limited examples, this experiment reverses the 
traditional roles of the dataset split. The smaller Xview validation set serves as this model’s training set, 
while the larger Xview training set is the model’s validation set. The smaller validation set represents the 
scenario of having few examples of the novel classes, while the larger training set represents the set of 
many general examples. The large set of objects for validation will provide a better understanding of how 
well the model generalizes to the model classes and supports more efficient evaluation of the different 
approaches to synthetic imagery generation.  

This experiment uses the Faster R-CNN detection model defined in Facebook Research’s Detectron2,2 
pre-trained on ImageNet over three epochs. Orbital used transfer learning on the pre-trained model, 
unfreezing the backbone (Resnet50) up to layer 2. In most cases, the team used default parameters to run a 
series of experiments that tuned the hyper-parameters on the real imagery for CNN training and then used 
those settings for the synthetic imagery training and validation. The non-default hyper-parameter settings 
included:  

● Scaling up all images by two times to make use of every pixel in the satellite imagery; because 
the model’s Resnet50 backbone was designed for terrestrial applications, it tends to give up 
resolution to reduce memory footprint; upscaling the images by two times mitigated this issue and 
supported training and validation  

● Using Learning rate scheduler with Cosine Annealing and warmup to achieve a base learning rate 
of 0.005  

● Modifying the anchor box sizes and aspect ratios as follows to better fit the sizes and shapes of 
the objects; computing optimal sizes with histograms of object sizes and aspect ratios in the 
training set   

SIZES: [[25], [50], [100], [200], [400]]  

ASPECT_RATIOS: [[0.33], [0.5], [1.0], [2.0], [3.0]]  

● Augmenting training data, such as brightness changes (0.8-1.2 range), contrast changes (0.8-1.2), 
saturation (0.8-1.2), random horizontal and vertical flips, and rotations of plus/minus 20 degrees; 
rotations are particularly important to avoid over-fitting the small training sets  

Synthetic Data Set Creation  

The experiment leveraged commercial capabilities for the synthetic dataset tools provided by Rendered.ai. 
The Rendered.ai platform provides a simple way to generate data with different characteristics in a 
reproducible way. The platform makes it easy to configure datasets with different properties, scenarios, 
and effects efficiently, which makes rapid iteration and experimentation possible. Configurations are 
encoded and stored, allowing for reproducibility, which is critical for machine-learning research and 
development. Orbital performed extensive experimentation to produce over 500,000 synthetic images. 
Experimentation supported both improved outcomes and a deeper understanding of what did and didn’t 
work. The team discovered that the use of Domain Transfer techniques on the synthetic imagery is a 
critical step and explored several approaches to Domain Transfer. The GAN-based algorithms performed 
the best.  

The datasets and the workflow tools that produced these results are available upon request to the customer 
in a collaborative cloud environment that also supports new dataset creation and experimentation.  

 
2 https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/ 
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Figure 1: Commercially available, cloud-native synthetic data software was used to achieve improvements in average precision 
scores for important objects of interest. Workflow summary from left to right: dataset generation configuration, training 
dataset, trained model. We point the way forward for further advances in these capabilities. 

Orbital performed a number of experiments to optimize various parameters with significant impact on 
model training and prediction accuracy, as briefly summarized here:  

● Color space. Synthetic data often do not match the color of real objects; tuning is required to 
mimic the color distribution of real data. The team experimented with adjusting and removing the 
hue of objects in the synthetic data. The results show color is not a feature that plays an important 
role for detection.   

● Real vs synthetic background. Synthetic data generation can be a resource- and compute- 
intensive effort. With the abundance of real Earth-observation imagery available, this experiment 
aimed to understand how effectively real imagery can serve as background for synthetic objects 
of interest. The team leveraged existing xView data with no objects of interest as background and 
tested this against fully synthetic background for the various scenarios in the xView dataset, such 
as urban, suburban, and mining. Without domain adaptation, both datasets performed 
significantly worse. However, with domain adaptation, synthetic data generated with 3D 
background performed better than 2D background for the tower crane class.  

● Distractor objects. The team hypothesized that the model would overfit on inherent artifacts in 
synthetic data generated using an xView background. To test this, the experiment added distractor 
synthetic objects similar in the size of the objects of interest to the generated images. The results 
showed that the distractor objects did not make a noticeable change in model performance.   

● Distribution of objects of interests. Dealing with imbalanced datasets is common in machine 
learning. The benefit of synthetic data is better control over the generation of balanced and 
imbalanced datasets. The team created a dataset that randomized the distribution of the three 
classes of objects of interest as well as one with a uniform distribution.   

Image Domain Adaptation  
For the CNN model to learn to identify objects in real images, the synthetic training data in feature space 
must come from the same statistical distribution—or domain— as the real imagery. CNN models can 
quickly learn a dataset’s distribution, and if the synthetic differs from real imagery, the model will not be 
able to detect objects in real images. Therefore, the domain of the synthetic images must be adapted to 
match that of the real images.  

Orbital focused on two approaches to domain adaptation to improve real data performance for models 
trained on synthetic data: traditional and neural-based domain adaptation techniques. For the traditional 
approach, the team applied adjustments and corrections in the Fourier space and color space and used 
various filters and blending techniques. The team used CycleGAN image-to-image translation to adapt 
synthetic images to improve the ability of the synthetic training dataset to generalize to the real-world test 
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dataset. The CycleGAN model was created to translate synthetic images to match the Xview real-world 
images. The CycleGAN model was trained to match the Xview corpus of images. The experiment 
determined the optimal number of cycles is eight epochs.   

Examples of Synthetic Images  

The following illustrations show a few examples of the synthetic images created for the experiment. 
While the placement of multiple synthetic objects in these environments looks wrong to humans, they 
actually help the model learn to recognize the objects in many different scenarios. Despite the use of 
many traditional domain- adaptation techniques to make the images look more realistic, they still appear 
as synthetic to humans—and to the model.   

  

Examples of Domain-Adapted Synthetic Images  

These examples of domain-adapted versions of the synthetic images were created using the CycleGAN 
model trained on the Xview dataset. The images now appear more realistic to both humans and the neural 
network. Two of the four images are synthetic, and two are real.  
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Results  

Baseline Line Model  
Figure 2 compares experiments with synthetic images to the baseline model.   
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Figure 2. Baseline performance achieved by training on only the small amount of real data available was very 
low across all three categories; most notably, mobile cranes. The variance in results is due to stochastic training. 

Orbital created a series of synthetic datasets, each with different traditional and deep learning-based 
domain adaptation approaches. Models trained with synthetic images improved based on the adaptation 
methods used. Incremental training the model with real images after training with CycleGAN-adapted 
synthetic images produced better results than the baseline.   

The average precision (AP) scores are calculated with an average of bounding box Intersection-
OverUnion (IOU) over a range of 0.15–0.50 instead of the traditional range of 0.5–0.95. Figure 2 shows 
the AP scores for the three object classes as a function of training iteration over three separate training 
runs. This provides the baseline for the AP scores and their variance from run to run due to the statistical 
nature of stochastic gradient descent. The illustrations show the mobile crane class has relatively poor AP. 
The perrun variance for each class is several percentage points.   

Domain Adaptation  

Training on synthetic data alone does not generalize to real examples and performs worse than training on 
the small real image set, even with thousands of unique synthetic examples. The CycleGAN versions of 
the synthetic datasets improve performance over original synthetic images, in some cases (the tower crane 
class) surpassing the baseline on real training images. The crane truck class AP was very low for Synth0 
and Synth1 datasets, even after CycleGAN adaptation. However, when the models were improved in 
Synth3, the CycleGAN versions of the class approached the level of the real images, as shown in Figure 
3.  

  
Figure 3. AP of the three target classes on a synthetic dataset (Synth3) and the CycleGAN domain-adapted version 
of the same dataset; showing the improvement in the ability of the model to learn when using CycleGAN-adapted 
images for training.  

Incremental Training  

The team experimented with different ways to train a model using both the large domain-adapted 

synthetic image dataset and the much smaller real examples. The models trained on the combined 

dataset did about as well as the average of the datasets individually, sometimes actually 

decreasing the model’s AP scores compared to training on either dataset alone.  

Training the model on the synthetic dataset first and then incrementally training on the real 

training data improved scores above either model and even above the real data baseline. This 

created a solution that could use synthetic training data and get results better than real data.   
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The results of incremental training is shown in Figure 4. In this example, the model trained for 14,000 

iterations using the combined 8-cycleGAN dataset, then continued training for 10,000 iterations 

using only the real training data. For each class, the incremental training improved the AP over 

the CycleGAN training and surpassed the baseline real APs.  

  
Figure 4. AP of the three classes after training on the combination of all of the CycleGAN synthetic datasets and 
then incrementally training on the real data; showing improvement across all three classes and exceeding the levels 
of the baseline results on real data.  

The following results charts and table (Table 1) summarize the AP scores for each type of training set: 
real only, synthetic only, and combined real and synthetic with incremental training.  
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Training Set Crane Truck AP Tower Crane AP Mobile Crane AP AP15 

Xview Real Only 10.6 9.75 3.9 12.2 

Combined Synthetic Only 7.7 20.1 6.2 14.3 

Combined Synthetic + Incremental 

Training on Real 
20.1 30.1 14.8 25.9 

Table 1: Maximum AP scores for models trained on real-only, combination of three 8-cycleGAN datasets, and using 

incremental real after combined synthetic training:  

Conclusion and Next Steps  

Orbital concludes it is technically feasible to create synthetic images for training detection 

models that, when combined with a small set of real training images, can train a model to identify 

the classes in the training set. With further experimentation, it should be possible to improve the 

accuracy of the model through a better understanding of how the CycleGAN domain adaptation 

is operating on the synthetic images and how the combination of the small real dataset improves 

upon the synthetics during the second phase of the training.  

The results show improvements on both novel classes and on novel sub-classes. The term novel 

classes indicates object types that do not look like a previously studied class (e.g., tower cranes 

that have a unique shape). Novel classes are challenging in that some may require that the 

detector learn new features in the backbone (e.g., the long truss structures of tower cranes).  

Novel subclasses are classes such as crane trucks, which are trucks and a well-studied class and 

possess particular and distinct features (in this case, a large extensible boom). The challenge in 

these cases is to accurately distinguish the novel subclass from all of the other, often much more 

common, kinds of trucks.  

While AP scores clearly improved in these experiments, both over pre-existing work and 

realimagery-only baselines, they are still below what would be required for a deployed system. 

Orbital recommends the following next steps to improve detection scores to a level required for a 

deployed system:   

● Higher quality and quantity for real training and validation imagery   

● Higher quality and quantity for object models for the simulation engine   

● More and better image modifiers and classical domain-adaptation techniques   

● Direct research on CycleGans for creating simulated imagery  

● Additional research on neural network architectures for training on simulated and mixed- 

simulated/real imagery  
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The overarching goal of all the tasks is to demonstrate how to build detectors that are sufficiently 

accurate to be used in practice; and to benchmark how much real training imagery is required to 

reach this level of accuracy.  

The end game of the work is to create a solution that takes in object models—essentially, CAD 

drawings—for objects of interest and produces detectors for those objects that can be applied to 

satellite and aerial imagery. This will require considerable additional work but, once complete, 

would support the quick development and deployment of detectors for many kinds of objects that 

cannot be accurately identified by the AI systems of today. 


